3,930 research outputs found

    ARPA Whitepaper

    Get PDF
    We propose a secure computation solution for blockchain networks. The correctness of computation is verifiable even under malicious majority condition using information-theoretic Message Authentication Code (MAC), and the privacy is preserved using Secret-Sharing. With state-of-the-art multiparty computation protocol and a layer2 solution, our privacy-preserving computation guarantees data security on blockchain, cryptographically, while reducing the heavy-lifting computation job to a few nodes. This breakthrough has several implications on the future of decentralized networks. First, secure computation can be used to support Private Smart Contracts, where consensus is reached without exposing the information in the public contract. Second, it enables data to be shared and used in trustless network, without disclosing the raw data during data-at-use, where data ownership and data usage is safely separated. Last but not least, computation and verification processes are separated, which can be perceived as computational sharding, this effectively makes the transaction processing speed linear to the number of participating nodes. Our objective is to deploy our secure computation network as an layer2 solution to any blockchain system. Smart Contracts\cite{smartcontract} will be used as bridge to link the blockchain and computation networks. Additionally, they will be used as verifier to ensure that outsourced computation is completed correctly. In order to achieve this, we first develop a general MPC network with advanced features, such as: 1) Secure Computation, 2) Off-chain Computation, 3) Verifiable Computation, and 4)Support dApps' needs like privacy-preserving data exchange

    3D Printed Embedded Force Sensors

    Get PDF
    Additive Manufacturing and 3D printing has opened the door to an endless amount of opportunities, including recent advances in conductive and resistive circuit printing. Taking advantage of these new technologies, we have designed a 3D printed insole with embedded plantar pressure sensor arrays. The customizable aspect of 3D printing allowed us to uniquely design a multitude of sensors. With the use of a dual extrusion printer we were able to produce a model that printed both the resistive circuit and complete insole simultaneously. These distinctive technologies have given us the capability to capture valuable pressure data from the sole of the foot. Analog signals sent from the pressure sensor arrays are received and processed through an attached multiplexer designed specifically for this application. The signal is then digitized and transmitted over the SPI transfer protocol to a processor and wirelessly communicated, via Bluetooth Low Energy, to a mobile android device to allow the user to easily record and interpret the array\u27s pressure data in real-time. The android device houses a pressure mapping view to show the gradient of force throughout the insole. With the capabilities of this insole we have provided an avenue for physicians and physical therapists to gather quantifiable insight into their patient\u27s progression throughout the rehabilitation process. With more intelligent and personalized data the applications of this technology are countless.https://scholarscompass.vcu.edu/capstone/1147/thumbnail.jp

    Discovering Job Preemptions in the Open Science Grid

    Full text link
    The Open Science Grid(OSG) is a world-wide computing system which facilitates distributed computing for scientific research. It can distribute a computationally intensive job to geo-distributed clusters and process job's tasks in parallel. For compute clusters on the OSG, physical resources may be shared between OSG and cluster's local user-submitted jobs, with local jobs preempting OSG-based ones. As a result, job preemptions occur frequently in OSG, sometimes significantly delaying job completion time. We have collected job data from OSG over a period of more than 80 days. We present an analysis of the data, characterizing the preemption patterns and different types of jobs. Based on observations, we have grouped OSG jobs into 5 categories and analyze the runtime statistics for each category. we further choose different statistical distributions to estimate probability density function of job runtime for different classes.Comment: 8 page

    China's Growth Strategies

    Get PDF
    Food Security and Poverty, International Development, Political Economy,

    Distributionally Robust XVA via Wasserstein Distance: Wrong Way Counterparty Credit and Funding Risk

    Get PDF
    This paper investigates calculations of robust X-Value adjustment (XVA), in particular, credit valuation adjustment (CVA) and funding valuation adjustment (FVA), for over-the-counter derivatives under distributional ambiguity using Wasserstein distance as the ambiguity measure. Wrong way counterparty credit risk and funding risk can be characterized (and indeed quantified) via the robust XVA formulations. The simpler dual formulations are derived using recent Lagrangian duality results. Next, some computational experiments are conducted to measure the additional XVA charges due to distributional ambiguity under a variety of portfolio and market configurations. Finally some suggestions for further work are discussed

    Distributionally Robust XVA via Wasserstein Distance: Wrong Way Counterparty Credit and Funding Risk

    Get PDF
    This paper investigates calculations of robust XVA, in particular, credit valuation adjustment (CVA) and funding valuation adjustment (FVA) for over-the-counter derivatives under distributional uncertainty using Wasserstein distance as the ambiguity measure. Wrong way counterparty credit risk and funding risk can be characterized (and indeed quantified) via the robust XVA formulations. The simpler dual formulations are derived using recent infinite dimensional Lagrangian duality results. Next, some computational experiments are conducted to measure the additional XVA charges due to distributional uncertainty under a variety of portfolio and market configurations. Finally some suggestions for future work are discussed
    corecore